英国威廉希尔唯一官网

英国威廉希尔唯一官网
  • 首页
  • 校情总览

    校情总览

    学校简介 顶层设计 现任领导 机构设置 校园风光 联系方式
  • 新闻中心

    新闻中心

    贸院要闻 工作动态 媒体报道 佳音在线 教学动态 学术科研 通知公告 贸院微视 电子校报
  • 教学科研

    教学科研

    教学管理 科研管理
  • 招生就业

    招生就业

    招生网 就业网 继续教育
  • 人才师资

    人才师资

    名师风采 人才招聘
  • 国际交流
  • 党团建设

    党团建设

    党建网 共青团
  • 青春校园

    青春校园

    缤纷校园
  • 评建专栏
  • 快速通道

    快速通道

    网络学习空间 VPN 采购招标 教育邮箱 一站式服务大厅 正版软件平台
  • 校情总览
    学校简介 顶层设计 现任领导 机构设置 校园风光 联系方式
  • 新闻中心
    贸院要闻 工作动态 媒体报道 佳音在线 教学动态 学术科研 通知公告 贸院微视 电子校报
  • 教学科研
    教学管理 科研管理
  • 招生就业
    招生网 就业网 继续教育
  • 人才师资
    名师风采 人才招聘
  • 国际交流
  • 党团建设
    党建网 共青团
  • 青春校园
    缤纷校园
  • 评建专栏
  • 快速通道
    网络学习空间 VPN 采购招标 教育邮箱 一站式服务大厅 正版软件平台
佳音在线
首页 新闻中心 佳音在线 正文

梁荣梅老师在SCI一区国际顶级期刊《Pattern Recognition》发表论文

供稿部门:科研处 作者: 审核人:科研处 发布时间:2023年11月22日 16:07 阅读量:

近日,在学校领导的大力支持下,学校大数据与智能工程学院梁荣梅老师与重庆大学吴小飞博士,张志民教授合作的论文《Linearized Alternating Direction Method of Multipliers for Elastic-net Support Vector Machines》,已被SCI一区国际顶级期刊《Pattern Recognition》(IF=8.0)收录。梁荣梅老师为论文第一作者,学校为第一通讯单位!该论文的发表说明学校对于科研工作的鼓励措施是卓有成效的,促进了学校良好的科研氛围,助力了高水平专业学科的建设。

《Pattern Recognition》被认为是国际模式识别领域的顶级期刊之一,创刊于1968年。2023年该期刊的影响因子为8.0,属于中科院计算机科学一区的顶级期刊。此外,国家一级学会,中国计算机学会(CCF)将其列为人工智能领域的B类推荐期刊,中国自动化学会(CAA)则将其列为A类推荐期刊。中国计算机学会(CCF)评价该期刊为“国际重要期刊,具有重要的国际学术影响力”。


论文简介:

在许多高维数据集中,通常会出现特征相关性的现象。弹性网正则化在支持向量机(SVM)中被广泛使用,因为它可以自动进行特征选择,并鼓励高度相关的特征一起被选择或移除。最近,一些有效的算法已被提出来解决具有不同凸损失函数的弹性网SVM问题,如hinge损失、squared hinge损失、huberized hinge损失、pinball损失和huberized pinball损失。在本文中,作者提出了一个线性化交替方向乘子法(LADMM)算法来解决上述弹性网SVM问题。此外,本文提出的算法还可以用于解决一些新的弹性网SVM问题,如弹性网最小二乘SVM。与一些现有算法相比,本文提出的算法在计算成本和准确性方面具有可比或更好的性能。在宽松的条件下,作者证明了算法的收敛性,并推导出了收敛速度。此外,对合成和真实数据集进行的数值实验验证了所提出算法的可行性和有效性。


In many high-dimensional datasets, the phenomenon that features are relevant often occurs. Elastic-net regularization is widely used in support vector machines (SVMs) because it can automatically perform feature selection and encourage highly correlated features to be selected or removed together. Recently, some effective algorithms have been proposed to solve the elastic-net SVMs with different convex loss functions, such as hinge, squared hinge, huberized hinge, pinball and huberized pinball. In this paper, we develop a linearized alternating direction method of multipliers (LADMM) algorithm to solve above elastic-net SVMs. In addition, our algorithm can be applied to solve some new elastic-net SVMs such as elastic-net least squares SVM. Compared with some existing algorithms, our algorithm has comparable or better performances in terms of computational cost and accuracy. Under mild conditions, we prove the convergence and derive convergence rate of our algorithm. Furthermore, numerical experiments on synthetic and real datasets demonstrate the feasibility and validity of the proposed algorithm.


作者简介:

梁荣梅,2020年获得重庆大学统计学硕士学位。目前就职于英国威廉希尔唯一官网,大数据与智能工程学院人工智能专业。主要从事支持向量机(SVM)、聚类分析和高维回归研究,主研了重庆市教委科学技术研究计划项目,部分研究成果被国际学术期刊《Statistical Papers》和《Pattern Recognition》收录。


论文链接:

Liang, R. M., Wu, X. F. and Zhang, Z. M. (2023) Linearized Alternating Direction Method of Multipliers for Elastic-net Support Vector Machines[J]. Pattern Recognition. https://doi.org/10.1016/j.patcog.2023.110134。


上一条:艺术设计学院荣获全国教师教学创新大赛重庆赛区(本研组)一等奖!全国三等奖! 下一条:学校思政课教师在重庆市2023年高校思想政治理论课教师教学技能竞赛中取得优异成绩
官方微博
官方微信
官方抖音

版权所有@英国·威廉希尔(williamhill)唯一官方网站 | 渝ICP备07002828号 渝公网安备 50011702500730号 网站浏览量: